Linking the "two-hit" response following injury to enhanced TLR4 reactivity.
نویسندگان
چکیده
Severe injury can initiate an exaggerated systemic inflammatory response and multiple organ failure (MOF) if a subsequent immune stimulus, "second hit", occurs. Using a mouse thermal injury model, we tested whether changes in innate immune cell reactivity following injury can contribute to the development of heightened inflammation and MOF. Using high-purity Escherichia coli lipopolysaccharide (LPS) to selectively stimulate Toll-like receptor 4 (TLR4), we demonstrate augmented interleukin (IL)-1beta, tumor necrosis factor alpha (TNF-alpha), and IL-6 production by 1 day but particularly, at 7 days after injury. The in vivo significance of enhanced TLR4 responsiveness was explored by challenging sham or burn mice with LPS at 1 or 7 days after injury and determining mortality along with in vivo cytokine and chemokine levels. Mortality was high (75%) in LPS-challenged burn but not sham mice at 7 days, although not at 1 day, after injury. Death was associated with leukocyte sequestration in the lungs and livers along with increased proinflammatory cytokine and chemokine levels in these organs. Blocking TNF-alpha activity prevented this mortality, suggesting that excessive TNF-alpha production contributes to this lethal response. These findings demonstrate the potential lethality of excessive TLR4 reactivity after injury and provide an explanation for the exaggerated inflammatory response to a second hit, which can occur following severe injury.
منابع مشابه
Injury primes the innate immune system for enhanced Toll-like receptor reactivity.
Severe injury causes a dramatic host response that disrupts immune homeostasis and predisposes the injured host to opportunistic infections. Because Toll-like receptors (TLRs) recognize conserved microbial Ags and endogenous danger signals that may be triggered by injury, we wanted to determine how injury influences TLR responses. Using an in vivo injury model, we demonstrate that injury signif...
متن کاملP 147: Role of Sparstolonin B in Intracerebral Hemorrhage-Induced Inflammatory Brain Injury: Blocking the Formation of TLR2/TLR4 Heterodimer
Intra-cerebral hemorrhage (ICH) is a particularly severe type of stroke accounting for 10–15 % of all strokes and is associated with a mortality rate of 30–50%. Neuroinflammation contributes to ICH-induced secondary brain injury and understanding the mechanisms causing neuroinflammation can be helpful to find new treatments of ICH. Recent studies demonstrated that toll like receptor...
متن کاملHippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats
Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal d...
متن کاملEnhanced TLR4 reactivity following injury is mediated by increased p38 activation.
Severe injury primes the innate-immune system for increased Toll-like receptor 4 (TLR4)-induced proinflammatory cytokine production by macrophages. In this study, we examined changes in TLR4 signaling pathways in splenic macrophages from burn-injured or sham mice to determine the molecular mechanism(s) responsible for the increased TLR4 responsiveness. Using flow cytometry and specific antibodi...
متن کاملIncreasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury.
Endogenous ligands released from damaged cells, so-called damage-associated molecular pattern molecules (DAMPs), activate innate signaling pathways including the TLRs. We have shown that hepatic, warm ischemia and reperfusion (I/R) injury, generating local, noninfectious DAMPs, promotes inflammation, which is largely TLR4-dependent. Here, we demonstrate that increasing dendritic cell (DC) numbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of leukocyte biology
دوره 77 1 شماره
صفحات -
تاریخ انتشار 2005